Top #10 ❤️ Xem Nhiều Nhất Công Thức Định Luật Coulomb Mới Nhất 10/2022 ❣️ Top Like | Sieuphampanorama.com

Luật Coulomb: Công Thức, Định Nghĩa, Ứng Dụng Trong Thực Tế

Đôi Điều Về Lực Đẩy Archimede Và Áp Suất Chất Lỏng

Định Luật Đàn Hồi Hooke

Định Luật Bảo Toàn Khối Lượng Là Gì?

Cơ Năng Là Gì? Nêu Định Luật Bảo Toàn Cơ Năng Của Con Lắc Đơn

Hiện Tượng Cảm Ứng Điện Từ Là Gì ? Từ Thông Là Gì ?

Trong tĩnh điện, một trong những điều cơ bản là định luật Coulomb. Nó được sử dụng trong vật lý để xác định lực tương tác của hai điện tích điểm cố định hoặc khoảng cách giữa chúng. Đây là một quy luật cơ bản của tự nhiên, không phụ thuộc vào bất kỳ luật nào khác. Sau đó, hình dạng của cơ thể thực không ảnh hưởng đến độ lớn của các lực. Trong bài viết này, chúng tôi sẽ mô tả một cách đơn giản luật Coulomb và ứng dụng của nó trong thực tế.

Câu chuyện khám phá

Sh.O. Mặt dây chuyền vào năm 1785 lần đầu tiên đã chứng minh bằng thực nghiệm các tương tác được mô tả bởi luật pháp. Trong các thí nghiệm của mình, ông đã sử dụng thang xoắn đặc biệt. Tuy nhiên, trở lại năm 1773, Cavendish đã chứng minh bằng cách sử dụng ví dụ về tụ điện hình cầu, rằng không có điện trường bên trong quả cầu. Điều này cho thấy rằng lực tĩnh điện thay đổi theo khoảng cách giữa các cơ thể. Nói chính xác hơn, khoảng cách bình phương. Sau đó, nghiên cứu của ông đã không được công bố. Trong lịch sử, phát hiện này được đặt theo tên của Coulomb và đại lượng mà điện tích được đo có tên tương tự.

Từ ngữ

Định nghĩa của luật Coulomb nêu rõ:Trong chân không Tương tác F của hai vật tích điện tỷ lệ thuận với sản phẩm của các mô-đun của chúng và tỷ lệ nghịch với bình phương khoảng cách giữa chúng.

Nghe có vẻ ngắn, nhưng nó có thể không rõ ràng với mọi người. Nói một cách đơn giản:Các vật thể có điện tích càng lớn và chúng càng gần nhau thì sức mạnh càng lớn.

Và ngược lại:Nếu bạn tăng khoảng cách giữa các điện tích – lực sẽ trở nên ít hơn.

Công thức của quy tắc Coulomb trông như thế này:

Chỉ định của các chữ cái: q là độ lớn của điện tích, r là khoảng cách giữa chúng, k là hệ số, phụ thuộc vào hệ thống đơn vị được chọn.

Độ lớn của điện tích q có thể dương hoặc có điều kiện âm. Sự phân chia này rất tùy tiện. Khi cơ thể chạm vào, nó có thể được truyền từ người này sang người khác. Theo sau đó, cùng một cơ thể có thể có điện tích và cường độ khác nhau. Một điện tích điểm là một điện tích hoặc vật thể có kích thước nhỏ hơn nhiều so với khoảng cách tương tác có thể.

Cần lưu ý rằng phương tiện đặt các điện tích ảnh hưởng đến tương tác F. Vì nó gần như bằng nhau trong không khí và trong chân không, việc phát hiện ra Coulomb chỉ áp dụng cho các phương tiện này, đây là một trong những điều kiện để áp dụng loại công thức này. Như đã đề cập, trong hệ thống SI, đơn vị điện tích là Coulomb, viết tắt Cl. Nó đặc trưng cho lượng điện trên mỗi đơn vị thời gian. Nó có nguồn gốc từ các đơn vị SI cơ bản.

1 C = 1 A * 1 giây

Điều đáng chú ý là kích thước của 1 C là quá mức. Do thực tế là các chất mang đẩy nhau, rất khó để giữ chúng trong một cơ thể nhỏ, mặc dù dòng điện trong 1A là nhỏ, nếu nó chảy trong dây dẫn. Ví dụ, một dòng điện 0,5 A chạy trong cùng một bóng đèn sợi đốt 100 W và hơn 10 A chảy trong một lò sưởi điện. Một lực như vậy (1 C) xấp xỉ bằng khối lượng 1 tấn tác dụng lên cơ thể từ phía bên trái cầu.

Bạn có thể nhận thấy rằng công thức này thực tế giống như trong tương tác hấp dẫn, chỉ khi khối lượng xuất hiện trong cơ học Newton, sau đó tích điện trong tĩnh điện.

Công thức Coulomb cho môi trường điện môi

Hệ số có tính đến các giá trị của hệ SI được xác định bằng N2* m2/ Cl2. Nó tương đương với:

Trong nhiều sách giáo khoa, hệ số này có thể được tìm thấy dưới dạng một phân số:

Đây0= 8,85 * 10-12 Kl2 / N * m2 – đây là hằng số điện. Đối với điện môi, E là hằng số điện môi của môi trường, khi đó định luật Coulomb có thể được sử dụng để tính toán lực tương tác của điện tích đối với chân không và môi trường.

Với ảnh hưởng của điện môi, nó có dạng:

Từ đây, chúng ta thấy rằng sự ra đời của một chất điện môi giữa các cơ thể làm giảm lực F.

Lực lượng được chỉ đạo như thế nào

Các điện tích tương tác với nhau tùy thuộc vào cực tính của chúng – các điện tích giống nhau đẩy nhau và thu hút ngược lại (ngược lại).

Nhân tiện, đây là sự khác biệt chính từ quy luật tương tác hấp dẫn tương tự, nơi các cơ thể luôn bị thu hút. Các lực được định hướng dọc theo đường được vẽ giữa chúng, được gọi là vectơ bán kính. Trong vật lý, ký hiệu là r12 và như một vectơ bán kính từ điện tích thứ nhất đến điện tích thứ hai và ngược lại. Các lực được hướng từ tâm điện tích sang điện tích trái dấu dọc theo đường thẳng này, nếu các điện tích trái dấu và ngược chiều, nếu chúng có cùng tên (hai dương hoặc hai âm). Ở dạng vector:

Lực tác dụng lên điện tích thứ nhất từ ​​phía thứ hai được ký hiệu là F12. Sau đó, ở dạng vector Coulomb, luật như sau:

Để xác định lực tác dụng lên điện tích thứ hai, ký hiệu F21 và R21.

Nếu cơ thể có hình dạng phức tạp và nó đủ lớn để ở một khoảng cách nhất định, nó không thể được coi là điểm, thì nó được chia thành các phần nhỏ và mỗi phần được coi là một điện tích điểm. Sau khi thêm hình học của tất cả các vectơ kết quả, lực kết quả thu được. Các nguyên tử và phân tử tương tác với nhau theo cùng một định luật.

Ứng dụng thực tế

Công việc của Coulomb rất quan trọng trong ngành tĩnh điện, trong thực tế, nó được sử dụng trong một số phát minh và thiết bị. Một ví dụ nổi bật là cột thu lôi. Với sự giúp đỡ của nó, các tòa nhà và lắp đặt điện được bảo vệ khỏi giông bão, do đó ngăn ngừa hỏa hoạn và thiết bị hỏng hóc. Khi trời mưa với giông bão trên trái đất, một điện tích cảm ứng có cường độ lớn xuất hiện, chúng bị thu hút về phía của đám mây. Nó chỉ ra rằng một điện trường lớn xuất hiện trên bề mặt trái đất. Gần đầu của cột thu lôi, nó có giá trị lớn, do đó, một luồng phóng xạ được đốt cháy từ đầu (từ mặt đất, qua cột thu lôi đến đám mây). Điện tích từ trái đất bị hút vào điện tích trái dấu của đám mây, theo định luật Coulomb. Không khí bị ion hóa, và điện trường giảm xuống gần cuối cột thu lôi. Do đó, các khoản phí không tích lũy trên tòa nhà, trong trường hợp đó xác suất xảy ra sét đánh là nhỏ. Nếu một cú đánh vào tòa nhà xảy ra, thì thông qua việc chống sét, tất cả năng lượng sẽ rơi xuống đất.

Trong nghiên cứu khoa học nghiêm túc, công trình vĩ đại nhất của thế kỷ 21 được sử dụng – máy gia tốc hạt. Trong đó, một điện trường làm công việc tăng năng lượng hạt. Xem xét các quá trình này từ quan điểm về tác động đối với một khoản phí điểm bởi một nhóm các khoản phí, sau đó tất cả các mối quan hệ của pháp luật hóa ra là hợp lệ.

Cuối cùng, chúng tôi khuyên bạn nên xem video cung cấp giải thích chi tiết về Luật Coulomb:

Định Luật Moore’S Law Là Gì? Hiện Tại & Tương Lai Phát Triển Đến Đâu

Định Luật Ôm Đối Với Toàn Mạch Cùng Các Loại Đoạn Mạch

Lớp Học Vật Lý: Lịch Sử Vật Lý

Bài Tập Vật Lý 12 Chuyên Đề Dòng Điện Xoay Chiều Một Phần Tử Chọn Lọc.

Định Luật Ôm Cho Các Loại Mạch Điện

Định Luật Coulomb Về Tĩnh Điện (Phần 1)

Định Luật Amdahl: Định Nghĩa Và Cách Nó Ảnh Hưởng Đến Máy Tính

Chương 3: Các Định Luật Chất Khí Và Thuyết Động Học

Định Luật Bảo Toàn Năng Lượng

Áp Dụng Định Luật Bảo Toàn Năng Lượng Và Định Luật Bảo Toàn Động Lượng

Phát Hiện Bất Thường Bằng Định Luật Benford

Nước Pháp, 1785. Lực hút hay đẩy giữa hai điện tích tỉ lệ thuận với độ lớn của hai điện tích và tỉ lệ nghịch với bình phương khoảng cách giữa chúng.

Định luật Coulomb nói rằng độ lớn của lực F giữa hai điện tích điểm trong không gian tự do được cho bởi

trong đó 10 q1 và -9 farad/mét), và F được cho theo đơn vị newton. Một coulomb, kí hiệu bằng chữ cái C, được định nghĩa là lượng điện tích đi qua một điểm trên một dây dẫn trong một giây khi dòng điện trong dây bằng một ampere. Nói cách khác, 1 C = 1 A.s. Nếu hai điện tích cùng dấu, thì lực là đẩy. Nếu hai điện tích trái dấu, thì lực là hút. q2 là độ lớn của các điện tích tính theo coulomb, r là khoảng cách giữa hai điện tích tính theo mét, là hằng số điện môi của không gian tự do (8,85 ×

Xét phương trình trên, ta có thể thấy độ lớn của lực tỉ lệ thuận với độ lớn của mỗi điện tích và tỉ lệ nghịch với bình phương khoảng cách giữa chúng. Lực do điện tích điểm này tác dụng lên điện tích điểm kia có phương nằm trên đường tưởng tượng nối giữa hai điện tích.

Các giá trị điện tích có thể xem là cộng được trong trường hợp khi electron và proton kết hợp tạo thành các hạt phức hoặc các tập hợp hạt. Ngoại trừ trường hợp các quark, chúng được xem là có điện tích phân số, toàn bộ điện tích quan sát thấy trong tự nhiên là bội số nguyên của điện tích trên electron ( Qe) hoặc proton ( Qp) có giá trị như sau:

Nhà vật lí hạt nhân Ernest Rutherford (1871-1937) đã tiến hành các thí nghiệm với hạt alpha tán xạ chứng minh rằng Định luật Coulomb là chính xác ngay cả với các hạt tích điện có kích cỡ hạt nhân và cả với các giá trị r nhỏ đến 10 -12 centi-mét. ( Hạt alpha là hạt nhân helium, và chúng gồm hai proton và hai neutron liên kết với nhau.) Thật vậy, ngày nay, các thí nghiệm đã chứng minh rằng Định luật Coulomb có giá trị trên một phạm vi khoảng cách đáng kể, từ nhỏ cỡ 10 -16 mét (một phần mười đường kính của hạt nhân nguyên tử) cho đến lớn cỡ 10 6 mét. Định luật Coulomb chỉ chính xác khi các điện tích đứng yên bởi vì chuyển động tạo ra từ trường làm thay đổi lực tác dụng lên các điện tích.

Lưu ý rằng một coulomb là một điện tích cực kì lớn so với điện tích của một electron hay proton. Để có một cảm giác về độ lớn, hãy xét hai vật, mỗi vật có điện tích toàn phần +1 coulomb. Nếu bạn đặt hai vật này cách nhau một mét, thì lực đẩy sẽ vào khoảng chín tỉ newton, tương ứng với một triệu tấn! Do coulomb là một điện tích khổng lồ như thế, nên thỉnh thoảng các nhà khoa học sử dụng những đơn vị đo nhỏ hơn, ví dụ như micro-coulomb (10 -6 C), pico-coulomb (10 -12 C), hay đơn giản hơn nữa là dùng điện tích electron (1,62 × 10 −19 C).

Định luật Coulomb và Định luật vạn vật hấp dẫn của Newton là ví dụ của cái các nhà vật lí thỉnh thoảng gọi là các định luật “tác dụng xa” – hiểu theo nghĩa là khi các định luật này được thiết lập, người ta chẳng biết môi trường nào truyền tương tác. Định luật Newton mô tả lực hút hấp dẫn của hai khối lượng m1 và m2 cách nhau một khoảng r và có thể viết là Fg = Gm1m2/ r2, trong đó Fg là độ lớn của lực hấp dẫn.

Ngay cả nhìn sơ bộ hình thức toán học của Định luật Newton và Định luật Coulomb ta cũng thấy hai công thức có những tương đồng đến bất ngờ. Cả lực tĩnh điện và lực hấp dẫn đều tỉ lệ thuận với tích của các thực thể đang tương tác (khối lượng hoặc điện tích), và cả hai lực đều tỉ lệ nghịch với bình phương khoảng cách.

Cũng độ trễ này ứng với các khối lượng có lực hút hấp dẫn, như trong trường hợp Trái Đất quay xung quanh Mặt Trời. Nếu Mặt Trời đột ngột biến mất, thì Trái Đất vẫn tiếp tục quay xung quanh Mặt Trời bị mất đó trong vài ba phút do bởi tác dụng hấp dẫn không thể truyền đi nhanh hơn tốc độ ánh sáng. Trong thời gian cần thiết cho tác dụng này truyền đi, vật này sẽ tiếp tục chịu tác dụng lực điện hay hấp dẫn từ vật kia như thể vật biến mất vẫn còn tồn tại.

Bất chấp những tương đồng này, tồn tại một khác biệt đáng chú ý giữa Định luật vạn vật hấp dẫn của Newton và Định luật Coulomb – lực Coulomb có thể là hút hay đẩy, còn lực hấp dẫn chỉ là hút. Đồng thời, độ lớn của lực Coulomb phụ thuộc vào môi trường ngăn cách các điện tích, còn lực hấp dẫn độc lập với môi trường. Ví dụ, thừa số của chúng ta trong Định luật Coulomb có thể được viết tổng quát hơn, dùng thay cho :

trong đó hằng số điện môi là một tính chất điện của môi trường bao xung quanh hai điện tích. Kí tự kí hiệu cho hằng số điện môi khi môi trường là chân không. Giá trị của = k, thỉnh thoảng được gọi là hằng số Coulomb, xấp xỉ bằng 9 ×. Môi trường dẫn điện có giá trị hằng số điện môi lớn hơn . Vì chân không không có hạt mang điện, nên hằng số điện môi cho chân không nhỏ hơn cho bất kì môi trường nào khác. Giá trị hằng số điện môi của không khí khô gần với của chân không nên các nhà khoa học thường xem các thí nghiệm tiến hành trong không khí như thể được tiến hành trong chân không.

Hằng số điện môi của một vật liệu thường được cho tương đối so với của không gian tự do. Nếu kí hiệu hằng số điện môi tương đối là , thì hằng số điện môi khi đó được tính bằng cách nhân với . Các giá trị hằng số điện môi tương đối xấp xỉ ở nhiệt độ phòng được cho trong bảng 6, và các giá trị đó có thể biến thiên tùy theo nhiệt độ và thành phần chính xác của vật liệu đang nghiên cứu. Ví dụ, tồn tại một phạm vi giá trị hằng số điện môi đối với những loại giấy khác nhau.

Định luật Coulomb chỉ chính xác đối với điện tích điểm, nghĩa là các điện tích định xứ trong một vùng không gian vô cùng nhỏ. Tuy nhiên, mọi thí nghiệm thực tế đều tiến hành với điện tích trên các vật có kích cỡ hữu hạn. Định luật Coulomb có thể dùng được trong các thí nghiệm với các vật như thế nếu kích cỡ của các vật mang điện là nhỏ hơn nhiều so với khoảng cách giữa các tâm của chúng. Lưu ý rằng trong thời hiện đại, định luật Coulomb đã được khái quát hóa thành dạng vi tích phân có thể dùng cho các điện tích phi chất điểm, và thông thường những khái quát này cũng được gọi là Định luật Coulomb.

Bảng 6. Hằng số điện môi tương đối của một số vật liệu

Nguồn: Glenn Elert, “Dielectrics,” in The Physics Hypertextbook; xem hypertextbook.com/physics/electricity/dielectrics/.

Mặc dù lực đẩy coulomb phải khá mạnh đối với các proton tích điện dương bên trong hạt nhân, song các proton không bay ra xa nhau là do bởi chúng được giữ lại bằng một lực cơ bản khác, lực hạt nhân mạnh, lực này mạnh hơn lực coulomb.

Tôi kết luận mục này với một bài toán ngắn cho thấy một phép tính thực tế vận dụng Định luật Coulomb. Tưởng tượng có hai quả cầu nhỏ, mỗi quả cầu có khối lượng 0,20 gam. Mỗi quả cầu được gắn dưới một sợi dây mảnh dài 50 cm treo vào cùng một điểm trên trần nhà. Do hai quả cầu có điện tích giống nhau, nên chúng đong đưa dưới trần nhà và không chạm vào nhau. Kết quả trong thí nghiệm đặc biệt này, mỗi sợi dây lập góc 37 độ so với đường vuông góc với trần nhà. Để giúp hình dung bài toán này, hãy vẽ một tam giác . Điểm trên cùng biểu diễn điểm treo của hai sợi dây, đỉnh bên trái và bên phải biểu diễn vị trí của hai quả cầu. Nếu chúng ta giả sử điện tích trên mỗi quả cầu là bằng nhau, thì chúng ta có thể xác định mỗi điện tích ấy lớn bao nhiêu.

Để giải bài toán này, ta có thể sử dụng lượng giác đơn giản, đồng thời nhận thấy trọng lượng của một vật bằng khối lượng 10 m của nó nhân với gia tốc trọng trường -3 N. Đây là lực đẩy giữa hai quả cầu. Ta có thể thay lực này vào công thức Định luật Coulomb để tìm điện tích trên mỗi quả cầu: g (bằng 9,8 m/s 2). Trước tiên, xét quả cầu bên trái. Có ba lực tác dụng lên quả cầu: trọng lực hướng xuống ( mg), lực căng T trên sợi dây, và lực đẩy F do điện tích trên quả cầu bên phải tác dụng. Do các quả cầu không chuyển động, nên các lực trên trục x và trục y cân bằng nhau. Như vậy, đối với các lực trên trục x ta có – 0,6 T = 0. Xét các lực trên trục y, ta có 0,8 T – (0,2)(10 -3 kg)(9,8 m/s 2) = 0, cho ta T = 2,45 ××

(Khoảng cách giữa hai quả cầu là 0,60 m, có thể tính được bằng lượng giác, biết chiều dài dây 50 cm và góc 37 10 o.) Giải cho -7 coulomb hay 0,24 q, ta tìm được q xấp xỉ bằng 2,4 ×C, trong đó C là kí hiệu cho micro-coulomb.

Trong một hệ gồm nhiều điện tích điểm, các điện tích tác dụng lực lên nhau, và hợp lực tác dụng lên một điện tích bất kì bằng tổng vector của từng lực do mỗi điện tích khác trong hệ tác dụng lên điện tích đó.

Trích từ Archimedes to Hawking (Clifford Pickover) Vui lòng ghi rõ “Nguồn chúng tôi khi đăng lại bài từ CTV của chúng tôi.

Thêm ý kiến của bạn

Kết Thúc Của Định Luật Moore ?

Sự Chấm Dứt Của Định Luật Moore

Làm Thế Nào Để Tính Toán Được Định Luật Ohm Để An Toàn Khi Hút Vape

Bài 5: Định Luật Ohm

Bài 9: Định Luật Ohm Đối Với Toàn Mạch

Định Luật Ôm Là Gì? Công Thức Và Các Dạng Bài Tập Về Định Luật Ôm

Đề Tài Hướng Dẫn Học Sinh Giải Bài Tập Áp Dụng Định Luật Ôm Cho Các Đoạn Mạch Của Vật Lý Lớp 9

Chương Ii: Bài Tập Định Luật Ôm Cho Toàn Mạch

Định Luật Moore Sắp Đạt Tới Giới Hạn

Định Luật Moore Sắp Sửa Bị Khai Tử?

Bạn Có Biết Vẫn Còn Một Định Luật Moore Thứ 2?

Số lượt đọc bài viết: 14.627

1 Định luật ôm là gì? Công thức của định luật ôm

2 Các trường hợp cần lưu ý với định luật ôm 2.1 Hiện tượng đoản mạch

2.2 Định luật ôm với các loại mạch điện

3 Các dạng bài tập định luật ôm đối với toàn mạch 3.1 Dạng 1: tìm các đại lượng theo yêu cầu

3.2 Dạng 2: Biện luận công suất cực đại

3.3 Dạng 3: Ghép nguồn thành bộ

3.4 Dạng 4: mạch chứa tụ, bình điện phân…

Định luật ôm là gì? Công thức của định luật ôm

Trước khi tìm hiểu chuyên đề định luật ôm cho toàn mạch và hiểu định luật ôm là gì ta cần hiểu, toàn mạch là gì? Toàn mạch được hiểu là một mạch điện kín đơn giản nhất gồm có suất điện động E, điện trở ngoài (R_{N}) và điện trở trong r. Các điện trở này được mắc vào hai cực của nguồn điện.

Định luật ôm tổng quát với toàn mạch được phát biểu như sau:

Cường độ dòng điện chạy trong mạch điện kín tỉ lệ thuận với suất điện động của nguồn điện và tỉ lệ nghịch với điện trở toàn phần của mạch đó

Từ phát biểu trên, ta có công thức định luật ôm lớp:

I là cường độ dòng điện mạch kín (đơn vị A)

(R_{N}) là điện trở ngoài

E là suất điện động của nguồn điện (đơn vị V)

r là điện trở trong của nguồn điện (đơn vị ôm, kí hiệu (Omega))

Từ công thức trên, có thể suy ra công thức tính suất điện động: (E= I(R_{N} +r)= U_{N} + I_{r})

Định luật ôm lớp 11 chúng ta sẽ được học, vậy có những hiện tượng nào có thể xảy ra với mạch điện?

Ta có biểu thức định luật ôm: (I = frac{E}{(R+r)})

Nếu R= 0 thì (I = frac{E}{r}). Trường hợp này gọi là hiện tượng đoản mạch nguồn điện.

Hiện tượng này sẽ xảy ra khi ta nối hai cực của nguồn điện bằng dây dẫn có điện trở rất nhỏ. Đây là một hiện tượng nguy hiểm có thể gây chập, cháy mạch điện, và cũng là một trong những nguyên nhân dẫn tới hỏa hoạn.

Nếu r = 0 thì U = E ta gọi đây là hiện tượng mạch hở.

Định luật ôm cho đoạn mạch chỉ chứa R: (I = frac{U}{R})

Đoạn mạch chứa máy thu: (U_{AB}= E + I(R+r).)

Đoạn mạch chứa nhiều nguồn điện, nhiều điện trở thì biển thức định luật ôm sẽ là:

(U= E_{1}-E_{2} + I(R_{1} + R_{2} + r_{1} + r_{2}))

Các dạng bài tập định luật ôm đối với toàn mạch

Với các dạng bài tập này, ta cần ghi nhớ các công thức cơ bản để có thể áp dụng. ngoài ra, ta cần nhớ công thức tính điện trở toàn mạch: (R_{tm}= R_{}N + r)

Đầu tiên, ta cần tìm biểu thức P theo R. Sau đó khảo sát biểu thức để tìm R sao cho (P_{max}). Và Pmax (P_{max}= frac{E^{2}}{(R+r)^{2}}times R = frac{E^{2}}{(sqrt{R}+frac{r}{sqrt{R}})^{2}})

Xét: (sqrt{R}+frac{r}{sqrt{R}}) đạt giá trị cực tiểu khi R = r khi đó (P_{max}= frac{E^{2}}{4r})

Các nguồn ghép nối tiếp: (e_{b} = e_{1} + e_{2}+cdot cdot cdot + e_{n}) và (r_{b} = r_{1} + r_{2}+cdot cdot cdot +r_{n})

Các nguồn giống nhau ghép nối tiếp: (e_{b} = ne) và (r_{b} = nr)

Các nguồn giống nhau ghép hỗn hợp đối xứng: (e_{b} = ne) ; (r_{b}= frac{nr}{m})

Mạch chứa tụ điện: mạch điện này không có dòng điện qua các nhánh của tụ, do đó ta cần bỏ qua các nhánh có tụ và giải mạch điện để tìm cường độ dòng điện qua các nhánh. Khí đó, hiệu điện thế giữa hai bản tụ hoặc hai đều bộ tụ chính là hiệu điện thế giữa 2 điểm của mạch điện nối với hai bản tụ hoặc hai đầu bộ tụ.

Định Luật Ôm Tổng Quát

Chương Ii: Bài Tập Định Luật Ôm Cho Mạch Chứa Tụ Điện

Bài Tập Về Mạch Điện Lớp 11 (Cơ Bản)

Giải Bài Tập Lý 11

Chuyên Đề Vật Lý 11

Định Luật 1 Newton: Nội Dung, Công Thức Và Ý Nghĩa

Giáo Án Vật Lí 10

Bài 15: Định Luật Ii Newton

Các Định Luật Của Newton Về Chuyển Động

Ứng Dụng 3 Định Luật Newton Để Tăng Năng Suất Công Việc

Chương Ii: Định Luật I Newton, Quán Tính, Hệ Qui Chiếu Quán Tính

Số lượt đọc bài viết: 8.061

1 Nội dung và công thức định luật 1 Newton 1.1 Nội dung của định luật 1 Newton

1.2 Công thức của định luật 1 Newton

2 Nội dung và công thức định luật 2 Newton 2.1 Nội dung và công thức định luật 2 Newton

2.2 Bài tập ví dụ về định luật 2 Newton

3 Ý nghĩa định luật 1 và 2 Newton 3.1 Ý nghĩa định luật 1 niu tơn

3.2 Ý nghĩa định luật 2 niu tơn

Nội dung và công thức định luật 1 Newton

Định luật vạn vật hấp dẫn của Newton đã quá quen thuộc và có ý nghĩa to lớn trong cuộc sống. Tuy nhiên, bên cạnh đó chúng ta cũng không thể bỏ qua định luật 1 và 2 Newton. Vậy định luật 1 có nội dung và công thức thế nào?

Định luật 1 Newton nói về sự chuyển động của vật hay còn được gọi là định luật quán tính. Nội dung của định luật được phát biểu như sau: Nếu một vật không chịu tác dụng của bất cứ lực nào hoặc chịu tác dụng của nhiều lực nhưng hợp lực của các lực này bằng không thì nó giữ nguyên trạng thái đứng yên hoặc chuyển động thẳng đều.

Có thể hiểu, nếu một vật không chịu tác dụng bởi lực nào hoặc chịu lực tác dụng có hợp lực bằng 0 thì nếu vật đó đang đứng yên sẽ đứng yên mãi mãi, còn nếu vật đó đang chuyển động thì sẽ chuyển động thẳng đều mãi mãi. Trạng thái ở trong trường hợp này được đặc trưng bởi vận tốc của chuyển động.

Định luật 1 của Newton hay còn được biết đến với tên gọi khác là định luật quán tính. Từ nội dung của định luật, ta có thể suy ra công thức của nó.

Vectơ vận tốc của một vật tự do là: (overrightarrow{v} = 0) (không đổi)

Do đó, vectơ gia tốc của một vật chuyển động tự do là: (overrightarrow{a} = frac{doverrightarrow{v}}{doverrightarrow{t}}=overrightarrow{0})

Nội dung và công thức định luật 2 Newton

Bên cạnh định luật 1, chúng ta cũng không thể bỏ qua định luật 2 Newton. Nhiều người thường thắc mắc, định luật 2 Newton của ai? Định luật 2 do Newton phát hiện ra và được chia thành định luật 2 trong thuyết cơ học cổ điển và định luật 2 trong vật lý thông thường.

Định luật 2 Newton được phát biểu như sau Gia tốc của một vật sẽ cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc luôn tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật đó

Từ phát biểu này, ta có công thức : (overrightarrow{a} = frac{overrightarrow{Fhl}}{m})

m là khối lượng của vật

(overrightarrow{a}) là gia tốc của vật và đo bằng đơn vị (m/s^{2})

Đây là công thức định luật 2 niu tơn lớp 10 đã được học. Tuy nhiên, với định luật này, ta còn có thể hiểu như sau:

(overrightarrow{F} = frac{doverrightarrow{p}}{dt}) với F là tổng ngoại lực tác dụng lên vật, (overrightarrow{p}) là động lượng của vật, đơn vị đo là kgm/s và t là thời gian, được đo bằng s.

Cách hiểu này đã đưa ra định nghĩa cho lực. Có thể hiểu, lực là sự thay đổi của động lực theo thời gian. Và lực của vật sẽ tỉ lệ thuận với động lực. Nếu động lực của vật biến đổi càng nhanh thì ngoại lực tác dụng lên vật sẽ càng lớn và ngược lại.

Ví dụ: một chiếc xe có khối lượng là m. Chiếc xe này đang chuyển động trên con người nằm ngang với vận tốc là v = 30km/h. Đang chuyển động thì chiếc xe bị tắt máy đột ngột. Tính thời gian chiếc xe bị dừng lại dưới tác dụng của lực ma sát giữa xe và mặt đường. Biết hệ số ma sát của xe với mặt đường là (mu =0,13) và gia tốc (g=9,81m/s^{2}).

Trước tiên ta cần đổi 30km/h = 8,33m/s.

Khi xe bị tắt máy đột ngột, lực tác dụng lên xe là lực ma sát. Áp dụng định luật 2 Newton ta có: (F_{ms}= m.a = mu P)

Vậy (a = frac{mu P}{g}= frac{mgmu}{m} = mu .g)

Có phương trình vận tốc: (v = v_{o}-at)

Chiếc xe bị dừng lại đột ngột, suy ra lực ma sát tác dụng lên chiếc xe sẽ có giá trị âm, vecto F ngược chiều chuyển động. Khi chiếc xe dừng lại, ta có v = 0, lúc đó t = T.

Suy ra: (0 = v_{o}-aT) nên: (v_{o}=aT)

Thay số, ta có thể dễ dàng tính được giá trị T.

Ý nghĩa định luật 1 và 2 Newton

Định luật 1 Newton nói lên tính chất quán tính của một vật. Đó là tính chất bảo toàn trạng thái khi chuyển động. Định luật này được áp dụng khá nhiều trong thực tế. Chẳng hạn như khi bạn đang ngồi trên một xe ôtô. Khi chiếc xe bắt đầu chạy, bạn và những hành khách theo quán tính sẽ bị ngã về phía sau. Ngược lại, khi xe đột ngột dừng lại thì mọi người lại bị chúi về phía trước. Tương tự như khi xe quành sang phải hay sang trái.

Giải thích hiện tượng này, định luật 1 Newton chỉ ra đó là do bạn và những người khác đều có quán tính do đó mọi người vẫn sẽ giữ nguyên trạng thái chuyển động cũ.

Chẳng hạn như đối với xe đua, các nhà sản xuất sẽ tính toán cách làm giảm khối lượng để xe có thể tăng tốc nhanh hơn.

Please follow and like us:

Tư Vấn Hợp Đồng Quốc Tế

Change To Be Rich : Định Luật Murphy Là Gì ? ( Chi Tiết )

Kiến Thức Kỹ Thuật Điện Cơ Bản Về Mạch Điện, Các Định Luật

Understanding The U.s. Foreign Agents Registration Act (Fara) Part 2: The Registration Criteria

Phân Tích Định Luật “vạn Vật Hấp Dẫn” Của Newton Dưới Góc Độ “tư Duy Thành Công”.

🌟 Home
🌟 Top