Top 7 # Xem Nhiều Nhất Định Luật Bảo Toàn Năng Lượng Vật Lý 10 Mới Nhất 6/2023 # Top Like | Sieuphampanorama.com

Định Luật Bảo Toàn Năng Lượng

Bảo toàn năng lượng là một trong những định luật nổi tiếng trong lĩnh vực Vật Lý. Và là một trong bốn định luật nhiệt động lực học mà bạn đã từng được học qua khi còn ngồi trên ghế nhà trường.

Định nghĩa bảo toàn năng lượng

Năng lượng không tự nhiên sinh ra cũng không tự nhiên mất đi. Nó chỉ chuyển hóa từ dạng này sang dạng khác hoặc từ vật này sang vật khác.

Đây chính là phát biểu khi nói đến bảo toàn năng lượng. Nó được xem là định luật cơ bản nhất trong vật lý học.

Bạn cũng có thể hiểu: “Trong vũ trụ, tổng năng lượng không hề thay đổi, nó chỉ có thể chuyển từ hệ này sang hệ khác”. Rõ ràng con người không thể tạo ra năng lượng, mà họ chỉ biến chuyển các dạng năng lượng với nhau mà thôi.

Sự hình thành và phát triển định luật bảo toàn và chuyển hóa năng lượng

Mayer – tổng quan về các quan niệm

Mayer (1814 – 1878) là một bác sỹ y khoa và ông làm việc trên một tàu Viễn Dương. Ông được công nhận là người đầu tiên phát minh ra định luật bảo toàn năng lượng và chuyển hóa năng lượng.

Năm 1841, ông đã viết một công trình mang tên: “Về việc xác định các lực về mặt số lượng và chất lượng”.

Năm 1542, Mayer đã tiếp tục gửi đi một công trình thứ hai, “Nhận xét về các lực của thế giới vô sinh”. Ông đã đưa ra những lập luận chung về “lực”. Sau đó là chi tiết phân tích về sự chuyển hóa “lực rơi” chính là thế năng ngày nay. Và “hoạt lực” chính là động năng ngày nay. Và lần này ông kết luận “Lực là những đối tượng không trọng lượng, không bị hủy diệt và nó có khả năng chuyển hóa:

Năm 1845, ông tiếp tục hoàn thành một công trình mang tên” Chuyển động hữu cơ trong mối liên hệ với sự trao đổi chất”. Lần này ông tính lại đương lượng cơ của nhiệt là 367 kGm/kcal.

Sau này để tỏ lòng biết ơn người ra đã đặt tên cho công thức: Cp -Cv = R là phương trình Mayer.

Joule – xây dựng cơ sở thực nghiệm

Joule (1818 – 1889), ông là một chủ nhà máy sản xuất rượu bia lớn ở Anh. Với những đóng góp xuất sắc của mình, ông được công nhận là một trong những nhà khoa học phát minh ra định luật bảo toàn năng lượng và chuyển hóa năng lượng.

Năm 1843, ông công bố công trình: “Về hiệu quả nhiệt của điện từ và hiệu quả của cơ học”.

Năm 18409 – 1850, ông thực hiện một thí nghiệm kinh điển và được đưa vào sách giáo khoa. Ông đã xác định được đương lượng cơ học của nhiệt khoảng 424 kGm/kcal, đây là một con số khá chính xác.

Helmholtz – khảo sát định luật bảo toàn năng lượng và chuyển hóa năng lượng

Helmholtz (1821 – 1849), ông cũng là một bác sỹ, gia đình truyền thống kinh doanh vàng tại Đức.

Năm 1847, ông báo cáo với hội vật lý Berlin “Vấn đề bảo toàn các lực”. Ông đã nêu lên được “tổng các lực căng và các hoạt lực trong một hệ bao giờ cũng không đổi”.

Tiếp đến ông thực hhieenjkhaor sát và đưa ra nhiều kết luận chuẩn xác, làm tiền đề phát triển sau này. Ví dụ: “Khi có giao thoa ánh sáng, năng lượng của nó không bị tiêu hủy tại chỗ mà chỉ được phân bố lại, nó chỉ bị giảm khi sóng ánh sáng bị hấp thụ và khi đó nó chuyển thành các dạng năng lượng khắc như hóa năng hay nhiệt năng”.

Ngày nay định luật bảo toàn năng lượng và chuyển hóa năng lượng được các nhà khoa học nghiên cứu và hoàn thiện hơn. Và họ khẳng định rằng khoong một quá trình vật lý nào xảy ra mà phá hủy được 2 định luật này.

Ví dụ, với vật đen tuyệt đối, Fphản xạ = Ftruyền qua = 0, thì:

Giáo Án Vật Lý Lớp 10: Bài Tập Cơ Năng – Định Luật Bảo Toàn Cơ Năng

BÀI TẬP CƠ NĂNG – ĐỊNH LUẬT BẢO TOÀN CƠ NĂNG Bài 1: Một vật nặng 2kg được thả rơi tự do từ độ cao h = 50m, g = 10m/s2 Chọn mốc thế năng tại mặt đất: Xác định động năng, thế năng, cơ năng của vật tại vị trí thả vật. Tìm vận tốc cực đại của vật Tìm vị trí để động năng bằng thế năng. Tìm vận tốc khi động năng bằng thế năng Bài 2: Một vật được ném thẳng đứng tại mặt đất với vận tốc ban đầu 10m/s. Lấy m = 5kg. Xác định cơ năng của vật tại vị trí ném vật. Xác định độ cao cức đại Xác định vị trí để động năng bằng 3 lần thế năng. Xác định vận tốc khi động năng bằng ba lần thế năng. Bài 3: Một vật được ném thẳng đứng lên cao với vận tốc là 20m/s từ độ cao h so với mặt đất. Khi chạm đất vận tốc của vật là 30m/s, bỏ qua sức cản không khí. Lấy g = 10m/s2. Hãy tính: a. Độ cao h. b. Độ cao cực đại mà vật đạt được so với mặt đất. c. Vận tốc của vật khi động năng bằng 3 lần thế năng. Bài 4: Từ độ cao 10 m, một vật được ném thẳng đứng lên cao với vận tốc 10m/s, lấy g = 10m/s2. a/ Tìm độ cao cực đại mà vật đạt được so với mặt đất. b/ Ở vị trí nào của vật thì Wđ = 3Wt. c/ Xác định vận tốc của vật khi Wđ = Wt. d/ Xác định vận tốc của vật trước khi chạm đất. Bài 5: Một hòn bi có khối lượng 20g được ném thẳng đứng lên cao với vận tốc 4m/s từ độ cao 1,6m so với mặt đất. a) Tính trong hệ quy chiếu mặt đất các giá trị động năng, thế năng và cơ năng của hòn bi tại lúc ném vật b) Tìm độ cao cực đại mà bi đạt được. c) Tìm vị trí hòn bi có thế năng bằng động năng? d) Nếu có lực cản 5N tác dụng thì độ cao cực đại mà vật lên được là bao nhiêu? Bài 6: Từ mặt đất, một vật có khối lượng m = 200g được ném lên theo phương thẳng đứng với vận tốc 30m/s. Bỏ qua sức cản của không khí và lấy g = 10ms-2. 1. Tìm cơ năng của vật. 2. Xác định độ cao cực đại mà vật đạt được. 3. Tại vị trí nào vật có động năng bằng thế năng? Xác định vận tốc của vật tại vị trí đó. 4. Tại vị trí nào vật có động năng bằng ba lần thế năng? Xác định vận tốc của vật tại vị trí đó.

Bài 60: Định Luật Bảo Toàn Năng Lượng

+ Qua TN, nhận biết được trong các thiết bị làm biến đổi năng lượng, phần lớn năng lượng thu được cuối cùng bao giớ cũng nhỏ hơn phần năng lượng cung cấp cho thiết bị lúc ban đầu, năng lượng không tự sinh ra.

+ Phát hiện được sự xuất hiện một dạng năng lượng náo đó bị giảm đi. Thừa nhận phần năng lượng bị giảm đi bằng phần năng lượng mới xuất hiện.

+ Phát biểu được định luật bảo toàn năng lượng và vận dụng được định luật để giải thích hoặc dự đoán sự biến đổi của một số hiện tượng.

+ Thiết bị biến đổi cơ năng thành điện năng và ngược lại.

+ Thiết bị biến đổi thế năng thành động năng và ngược lại.

III. TỔ CHỨC HOẠT ĐỘNG DẠY HỌC Hoạt động 1: Kiểm tra kiến thức cũ

+ Đọc to câu hỏi trước lớp sau đó gọi HS trình bày kiến thức.

+ Câu 1: Làm thế nào ta có thể nhận biết một vật mang năng lượng?

+ Câu 2: Nêu các quá trình chuyển hóa năng lượng trong chiếc xe đạp, máy nổ, bóng đèn,…?

+ Gọi 1 HS khác nhận xét câu trả lời của bạn.

+ Nhận xét và đánh giá câu trả lời của các em.

Hoạt động 2: Giới thiệu bài mới

+ Mở bài giống như trong sách giáo khoa trang 157.

Hoạt động 3: Tìm hiểu sự chuyển hóa năng lượng trong các hiện tượng cơ, nhiệt, điện

+ Yêu cầu đại diện nhóm rút ra kết luận chung và ghi chép cẩn thận.

Hoạt động 4: Tìm hiểu sự biến đổi cơ năng thành điện năng và ngược lại. Hao hụt cơ năng

+ Treo tranh hình 60.2 SGK để HS quan sát sau đó phân tích cho HS nắm về nguyên tắc hoạt động của chúng.

+ Sau đó rút ra kết luận về hiện tượng hao hụt này chứ không làm thí nghiệm.

+ Yêu cầu các em ghi chép kết luận cẩn thận.

Hoạt động 5: Tìm hiểu định luật bảo toàn năng lượng

+ Yêu cầu 1 HS phát biểu định luật này sau đó cho các em ghi chép cẩn thận.

+ Nói lên tầm quan trọng và ý nghĩa của định luật này trong thực tế.

Hoạt động 6: Tìm hiểu phần vận dụng kiến thức

+ Nhận xét câu trả lời của các em. Nhấn mạnh lại tầm quan trọng của định luật này.

Hoạt động 7: Củng cố kiến thức và dặn dò

+ Yêu cầu 1 HS đọc phần ghi nhớ và phần “có thể em chưa biết”

+ Yêu cầu các em về học bài và đọc trước bài tiếp theo và đặc biệt là ôn tập để chuẩn bị thi HKII.

+ Chú ý lắng nghe GV đọc câu hỏi để chuẩn bị trả lời câu hỏi.

+ Nhận xét câu trả lời của bạn.

+ Chú ý lắng nghe.

+ Chú ý lắng nghe.

+ Quan sát giáo viên thí nghiệm, chú ý những lời giải thích của GV.

+ Rút ra kết luận chung theo hướng dẫn của GV.

+ Quan sát tranh và chú ý lắng nghe GV phân tích để trả lời câu hỏi.

+ Ghi chép kết luận vào trong vở bài học.

+ Ghi chép cẩn thận kết luận.

+ Ghi chép cẩn thận định luật.

+ Chú ý lắng nghe.

+ Cá nhân trả lời câu hỏi theo yêu cầu của GV.

+ Đọc phần ghi nhớ và phần “có thể em chưa biết”.

+ Ghi chú vào trong vở bài học.

Bài 60: ĐỊNH LUẬT BẢO TOÀN NĂNG LƯỢNG I. SỰ CHUYỂN HÓA NĂNG LƯỢNG TRONG CÁC HIỆN TƯỢNG CƠ, NHIỆT, ĐIỆN 1. Biến đổi thế năng thành động năng và ngược lại. Hao hụt cơ năng

+ Từ A đến C: Thế năng biến đổi thành động năng.

+ Từ C đến B: Động năng biến đổi thành thế năng.

+ Thế năng của viên bi ở A lớn hơn thế năng của viên bi ở B.

+ C3: Viên bi không thể có thêm nhiều năng lượng hơn thế năng mà ta đã cung cấp cho nó lúc ban đầu. Ngoài cơ năng còn có nhiệt năng xuất hiện do ma sát.

Kết luận 1: Trong các hiện tượng tự nhiên, thường có sự biến đổi giữa động năng và thế năng, cơ năng luôn luôn giảm. Phần cơ năng hao hụt đi đã chuyển hóa thành nhiệt năng.

2. Biến đổi cơ năng thành điện năng và ngược lại. Hao hụt cơ năng

+ C4: Trong máy phát điện: Cơ năng biến đổi thành điện năng. Trong động cơ điện: Điện năng biến đổi thành cơ năng.

II. ĐỊNH LUẬT BẢO TOÀN NĂNG LƯỢNG

Năng lượng không tự sinh ra hoặc tự mất đi mà chỉ chuyển hóa từ dạng này sang dạng khác, hoặc truyền từ vật này sang vật khác.

…………………………………………………………………………………………

…………………………………………………………………………………………

Bài viết khác

Năng Lượng Là Gì? Phát Biểu Định Luật Bảo Toàn Năng Lượng

Còn trong lý thuyết tương đối thì nhà khoa học Albert Einstein đã chỉ ra rằng giữa năng lượng và khối lượng vật thể có một mối liên hệ nào đó.

Tất cả mọi vật xung quanh chúng ta diễn ra và hoạt động được đều nhờ năng lượng và mỗi một đối tượng lại sử dụng một loại năng lượng khác nhau.

Năng lượng được đo bởi rất nhiều đơn vị khác nhau, trong đó ta có: Jun (Joules hoặc J), calo, W, éc và BTU. Các đơn vị này sẽ được sử dụng tùy thuộc theo từng loại năng lượng và được sử dụng cho những mục đích khác nhau. Nhờ có các đơn vị này mà chúng ta cũng dễ dàng hơn trong việc chuyển đổi năng lượng từ đơn vị này sang đơn vị khác. Điều này cũng tương tự như việc chuyển khoảng cách đi bộ thành dặm và km.

W là đơn vị được sử dụng để đo công suất hoặc dòng năng lượng. Thông thường thì các thiết bị gia dụng sẽ đo công suất bằng W, số W càng cao thì thiết bị hoạt động càng mạnh và tiêu tốn nhiều năng lượng hơn.

Ví dụ: Máy nước nóng có công suất 1000W thì nói sẽ sử dụng 1000W cho mỗi lần sử dụng.

Bên cạnh đó thì thời gian cũng là một phần để đo năng lượng. Nếu máy nước nóng có công suất 1000W sử dụng trong 1 giờ thì nó sẽ tiêu tốn khoảng 1kWh.

Định luật bảo toàn năng lượng và người đã tìm ra nó

Trong Vật lý và Hóa học, định luật bảo toàn năng lượng phát biểu rằng năng lượng của một hệ cô lập là không đổi. Điều này có nghĩa là năng lượng được bảo toàn theo thời gian. Nó không tự nhiên sinh ra cũng không tự nhiên mất đi mà nó chỉ chuyển từ dạng này sang dạng khác hoặc chuyển từ vật này sang vật khác.

Định luật bảo toàn năng lượng ra đời là cả một quá trình nghiên cứu phát triển của rất nhiều nhà khoa học. Năm 1841 nhà Vật lý học người Đức Julius Robert Mayer (1814 – 1878) sau một chuyến đi thực tế đã nghiên cứu về “Việc xác định các lực về mặt số lượng và chất lượng” gửi đến tạp chí “Biên niên vật lý học”. Tuy nhiên bản thảo này đã không được đăng tải.

Tới năm 1842 Mayer gửi công trình nghiên cứu thứ 2 với tên gọi “Nhận xét về các thế lực của thế giới vô sinh” đăng trên tạp chí Biên niên hóa học và dược học. Tại đây ông đã đưa ra những lập luận và phân tính sự chuyển hóa từ thế năng thành động năng. Và ông kết luận “Lực là những đối tượng không trọng lực, không bị hủy diệt và có khả năng chuyển hóa.

Đến năm 1845 Mayer lại tiếp tục hoàn thành công trình mới tên “Chuyển động hữu cơ trong mối liên hệ với sự trao đổi chất”. Ông quyết định xuất bản công trình này thành một cuốn sách nhỏ. Cứ như vậy ba công trình của ông đã nêu lên được những tư tưởng tổng quát nhất về định luật bảo toàn và chuyển hóa năng lượng. Tuy nhiên, rất không may cho ông là công trình thứ nhất không được công bố, công trình thứ 2 không được các nhà Vật Lý quan tâm. Và cứ như thế việc chứng minh định luật bảo toàn và chuyển hóa năng lượng của Mayer trở nên khó khăn.

Năm 1970 Rumpho đã thực hiện một thí nghiệm bằng cách ngâm một nòng súng trong một thùng nước và khoan nó bằng một chiếc khoan cùn. Sau khoảng 2 giờ rưỡi thì nước bắt đầu sôi. Ông cho rằng đây là thí nghiệm chứng tỏ nhiệt là một loại chuyển động, nhưng do chưa có khái niệm về công cơ học nên nghiên cứu này không mang ý nghĩa gì.

Đến năm 1826 công cơ học ra đời và được công nhận. Cùng lúc này thí nghiệm khuấy nước nổi tiếng của James Prescott Joule đã chứng minh được sự chuyển hóa năng lượng từ công thành nhiệt năng (1854). Đây chính là nền tảng của định luật bảo toàn và chuyển hóa năng lượng.

Song song với các nhà nghiên cứu khác thì Hermann Ludwig Ferdinand von Helmholtz – Bác sĩ kiêm nhà Vật lý người Đức cũng đã có những công trình nghiên cứu về sự bảo toàn năng lượng (1847). Sau đó ông quyết định mở rộng phạm vi nghiên cứu và đem nó ứng dụng vào nhiều trường hợp khác nhau. Từ đó những lý luận sẵn có của các nhà khoa học trước đó được ông phát triển và lần lượt chứng minh rằng năng lượng vĩnh viễn không tự nhiên mất đi mà nó chỉ chuyển hóa thành nhiệt, âm thanh, ánh sáng,…

Mặc dù có rất nhiều nhà nghiên cứu độc lập cùng tìm ra cách chứng minh cho tính đúng đắn của định luật bảo toàn năng lượng. Nhưng các nhà Vật Lý đều công nhận Người tìm ra định luật này đầu tiên chính là Julius Robert Mayer.

Theo các nghiên cứu đưa ra thì năng lượng được phân chia thành các dạng phổ biến như:

Động năng của vật chuyển động

Lực hấp dẫn, điện hoặc từ’ hay chính là năng lượng tiềm tàng được lưu trữ bởi các vị trí của vật trong trường lực.

Lực đàn hồi được lưu trữ lại bằng cách kéo căng các vật thể rắn.

Năng lượng hóa học được giải phóng do nhiên liệu bị đốt cháy.

Năng lượng bức xạ mang theo ánh sáng

Năng lượng nhiệt do nhiệt độ của một vật thể nào đó.

Tổng năng lượng của một hệ thống sẽ được phân chia thành thế năng, động năng hoặc kết hợp cả hai với nhiều cách khác nhau.

Năng lượng động lực được xác định bởi những chuyển động của một vật thể hoặc chuyển động tổng hợp của các thành phần của một vật thể. Năng lượng tiềm năng sẽ phản ánh lên những tiềm năng của một vật thể có chuyển động. Hay nói chung đó là một chức năng đến từ vị trí của một vật thể trong một trường hoặc có thể được lưu trữ trong chính nó.

Mặc dù hai loại này đã đủ để mô tả tất cả các dạng của năng lượng nhưng nó thường thuận tiện hơn khi đề cập đến sự kết hợp cụ thể của thế năng và động năng như dạng riêng của nó.

Tại sao năng lượng lại quan trọng đối với đời sống con người

Tổng năng lượng trong vũ trụ là có hạn, chúng ta không thể tạo ra hay phá hủy năng lượng mà chỉ có thể biến đổi hay chuyển đổi nó. Chúng ta không thể phủ nhận được vai trò to lớn của năng lượng đối với con người và đời sống. Bởi nó ảnh hưởng trực tiếp tới sự tồn tại, phát triển của con người.

Trong hoạt động sống, cơ thể của chúng ta cần phải nạp các loại thức ăn như: cơm cá, thịt, rau,… vào cơ thể sau đó các bộ phận sẽ chuyển hóa các chất này thành năng lượng duy trì sự sống cho cơ thể.

Trong các hoạt động công nghiệp, sản xuất, lắp ráp, chế tạo,… thì các loại năng lượng khác nhau đến từ cả năng lượng tái tạo và năng lượng không tái tạo đã góp phần quan trọng trong việc duy trì thúc đẩy mọi mặt đời sống, kinh tế con người phát triển. Nếu không có năng lượng thì chắc chắn chưng at sẽ không có cuộc sống như ngày hôm nay.