Top 10 # Xem Nhiều Nhất Ý Nghĩa Định Luật 3 Newton Mới Nhất 3/2023 # Top Like | Sieuphampanorama.com

3 Định Luật Newton 1 + 2 + 3 Tổng Hợp Nhất

Có 1 câu chuyện về trái táo rơi trúng đầu. Một câu chuyện tưởng chừng bình thường nhưng lại làm nên 1 thiên tài!

Isaac Newton là nhà thiên tài – người có ảnh hưởng rất to lớn đến lịch sử nhân loại. 3 định luật Newton của ông: Định luật I Newton, đ ịnh luật II Newton, đ ịnh luật III Newton được công nhận và được ứng dụng rộng rãi.

Sinh ngày: 4 tháng 1 năm 1643 [Lịch cũ: 25 tháng 12 năm 1642] tại Lincolnshire, Anh

Mất ngày: 31 tháng 3 năm 1727 (84 tuổi) [Lịch cũ: 20 tháng 3, 1726 (83 tuổi)] tại Kensington, Luân Đôn, Anh

Quốc tịch: Anh

Học vấn: Tiến sĩ

Công trình: Cơ học Newton, vạn vật hấp dẫn, vi phân, quang học, định lý nhị thức.

Chuyên ngành: Tôn giáo, vật lý, toán học, thiên văn học, triết học, giả kim thuật.

Nơi công tác: Đại học Cambridge Hội Hoàng gia

Người hướng dẫn luận án tiến sĩ: Isaac Barrow, Benjamin Pulleyn

Các nghiên cứu sinh nổi tiếng: Roger Cotes, William Whiston

Phát biểu định luật 1 Newton

Đinh luật 1 Newton hay định luật quán tính được phát biểu như sau:

Một vật thể sẽ giữ nguyên trạng thái đứng yên hoặc chuyển động thẳng đều nếu như không có một lực nào tác dụng lên nó hoặc nếu như tổng các lực tác dụng lên nó bằng không.

Phát biểu khác:

Trong mọi vũ trụ hữu hình, chuyển động của một chất điểm trong một hệ quy chiếu cho trước Φ sẽ được quyết định bởi tác động của các lực luôn triệt tiêu nhau khi và chỉ khi vân tốc của chất điểm đó bất biến trong Φ. Nói cách khác, một chất điểm luôn ở trạng thái đứng yên hoặc chuyển động thẳng đều trong hệ quy chiếu Φ trừ khi có một ngoại lực khác 0 tác động lên chất điểm đó.

Biểu thức định luật 1 Newton

Định luật Newton 1 chỉ ra rằng lực không phải là nguyên nhân cơ bản gây ra chuyển động của các vật. Hay đúng hơn là nguyên nhân gây ra sự thay đổi trạng thái chuyển động (thay đổi vận tốc/động lượng của vật).

Đang ngồi trên xe chuyển động thẳng đều. Xe rẽ sang trái: tất cả các hành khách đều nghiêng sang phải theo hướng chuyển động cũ.

Đang ngồi trên xe chuyển động thẳng đều. Xe đột ngột hãm phanh: tất cả các hành khách trên xe đều bị chúi về phía trước…

Phát biểu định luật 2 Newton

Sự biến thiên động lượng của một vật thể tỉ lệ thuận với xung lực tác dụng lên nó, và véc tơ biến thiên động lượng này sẽ cùng hướng với véc tơ xung lực gây ra nó. Hay gia tốc của một vật cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật.

Biểu thức định luật 2 Newton

Véc tơ F – là tổng ngoại lực tác dụng lên vật (đơn vị N)

Véc tơ a – là gia tốc (đơn vị m/s²)

m – là khối lượng vật (đơn vị kg)

Trong trường hợp vật chịu cùng lúc nhiều lực tác dụng F1, chúng tôi thì F là hợp lực của các lực:

Công thức định luật Newton thứ 2 phổ biến: F = m.a , với F là ngoại lực tác dụng lên vật (N), m là khối lượng của vật (kg), a là gia tốc của vật (m/s²)

Khối lượng và mức quán tính

Định nghĩa: Khối lượng là đại lượng đặc trưng cho mức quán tính của vật.

Tính chất của khối lượng:

Khối lượng là một đại lượng vô hướng, dương và không đổi đối với mỗi vật.

Khối lượng có tính chất cộng.

Trọng lực và trọng lượng

Trọng lực: là lực của Trái Đất tác dụng vào vật, gây ra cho chúng gia tốc rơi tự do. Trọng lực được kí hiệu là véc tơ P. Ở gần trái đất trọng lực có phương thẳng đứng, chiều từ trên xuống. Điểm đặt của trọng lực tác dụng lên vật gọi là trọng tâm của vật.

Độ lớn của trọng lực tác dụng lên một vật gọi là trọng lượng của vật, kí hiệu là P. Trọng lượng của vật được đo bằng lực kế. Công thức tính trọng lượng:

Khi một vật tác dụng lên vật khác một lực thì vật đó cũng bị vật kia tác dụng ngược trở lại một lực. Ta nói giữa 2 vật có sự tương tác.

Phát biểu định luật 3 Newton

Định luật Newton thứ 3 được phát biểu như sau:

Đối với mỗi lực tác động bao giờ cũng có một phản lực cùng độ lớn, nói cách khác, các lực tương tác giữa hai vật bao giờ cũng là những cặp lực cùng độ lớn, cùng phương, ngược chiều và khác điểm đặt.

Biểu thức định luật 3 Newton

Một trong hai lực tương tác giữa hai vật gọi là lực tác dụng còn lực kia gọi là phản lực.

Đặc điểm của lực và phản lực :

Lực và phản lực luôn luôn xuất hiện (hoặc mất đi) đồng thời.

Lực và phản lực có cùng giá, cùng độ lớn nhưng ngược chiều. Hai lực có đặc điểm như vậy gọi là hai lực trực đối.

Lực và phản lực không cân bằng nhau vì chúng đặt vào hai vật khác nhau.

Định luật Newton thứ 3 chỉ ra rằng lực không xuất hiện riêng lẻ mà xuất hiện theo từng cặp động lực-phản lực. Nói cách khác, lực chỉ xuất hiện khi có sự tương tác qua lại giữa hai hay nhiều vật với nhau. Cặp lực này, định luật 3 nói rõ thêm, là cặp lực trực đối. Chúng có cùng độ lớn nhưng ngược chiều vật A và B.

Hơn nữa, trong tương tác: A làm thay đổi động lượng của B bao nhiêu thì động lượng của A cũng bị thay đổi bấy nhiêu theo chiều ngược lại.

Các dạng bài tập về định luật Newton

Áp dụng 3 định luật Niu-tơn

Bài 1. Một ô tô có khối lượng 1 tấn đang chuyển động với v = 54 km/h thì hãm phanh. Chuyển động chậm dần đều. Biết lực hãm 3000N. a) Xác định quãng đường xe đi được cho đến khi dừng lại. b) Xác định thời gian chuyển động cho đến khi dừng lại.

Hướng dẫn giải: Chọn chiều + là chiều chuyển động, gốc thời gian lúc bắt đầu hãm phanh.

Hướng dẫn giải:

Bài tập tự luyện về định luật Newton

Bài 1: Cho viên bi A chuyển động tới va chạm vào bi B đang đứng yên, v A = 20m/s. Sau va chạm bi A tiếp tục chuyển động theo phương cũ với v = 10m/s. Thời gian xảy ra va chạm là 0,4s. Tính gia tốc của 2 viên bi, biết m A = 200g, m B = 100g.

Bài 2 : Một vật đang đứng yên, được truyền 1 lực F thì sau 5s vật này tăng v = 2m/s. Nếu giữ nguyên hướng của lực mà tăng gấp 2 lần độ lớn lực F vào vật thì sau 8s. Vận tốc của vật là bao nhiêu?

Bài 3: Lực F 1 tác dụng lên viên bi trong khoảng Δ t = 0,5s làm thay đổi vận tốc của viên bi từ 0 đến 5 cm/s. Tiếp theo tác dụng lực F 2 = 2.F 1 lên viên bi trong khoảng Δ t =1,5s thì vận tốc tại thời điểm cuối của viên bi là? ( biết lực tác dụng cùng phương chuyển động).

Bài 4: Một ô tô có khối lượng 500 kg đang chuyển động thẳng đều thì hãm phanh chuyển động chậm dần đều trong 2s cuối cùng đi được 1,8 m. Hỏi lực hãm phanh tác dung lên ô tô có độ lớn là bao nhiêu?

Chúng tôi luôn sẵn sàng đem lại những giá trị tốt đẹp cho cộng đồng!

Định Luật 1 Newton: Nội Dung, Công Thức Và Ý Nghĩa

Số lượt đọc bài viết: 8.061

1 Nội dung và công thức định luật 1 Newton

1.1 Nội dung của định luật 1 Newton

1.2 Công thức của định luật 1 Newton

2 Nội dung và công thức định luật 2 Newton

2.1 Nội dung và công thức định luật 2 Newton

2.2 Bài tập ví dụ về định luật 2 Newton

3 Ý nghĩa định luật 1 và 2 Newton

3.1 Ý nghĩa định luật 1 niu tơn

3.2 Ý nghĩa định luật 2 niu tơn

Nội dung và công thức định luật 1 Newton

Định luật vạn vật hấp dẫn của Newton đã quá quen thuộc và có ý nghĩa to lớn trong cuộc sống. Tuy nhiên, bên cạnh đó chúng ta cũng không thể bỏ qua định luật 1 và 2 Newton. Vậy định luật 1 có nội dung và công thức thế nào?

Định luật 1 Newton nói về sự chuyển động của vật hay còn được gọi là định luật quán tính. Nội dung của định luật được phát biểu như sau: Nếu một vật không chịu tác dụng của bất cứ lực nào hoặc chịu tác dụng của nhiều lực nhưng hợp lực của các lực này bằng không thì nó giữ nguyên trạng thái đứng yên hoặc chuyển động thẳng đều.

Có thể hiểu, nếu một vật không chịu tác dụng bởi lực nào hoặc chịu lực tác dụng có hợp lực bằng 0 thì nếu vật đó đang đứng yên sẽ đứng yên mãi mãi, còn nếu vật đó đang chuyển động thì sẽ chuyển động thẳng đều mãi mãi. Trạng thái ở trong trường hợp này được đặc trưng bởi vận tốc của chuyển động.

Định luật 1 của Newton hay còn được biết đến với tên gọi khác là định luật quán tính. Từ nội dung của định luật, ta có thể suy ra công thức của nó.

Vectơ vận tốc của một vật tự do là: (overrightarrow{v} = 0) (không đổi)

Do đó, vectơ gia tốc của một vật chuyển động tự do là: (overrightarrow{a} = frac{doverrightarrow{v}}{doverrightarrow{t}}=overrightarrow{0})

Nội dung và công thức định luật 2 Newton

Bên cạnh định luật 1, chúng ta cũng không thể bỏ qua định luật 2 Newton. Nhiều người thường thắc mắc, định luật 2 Newton của ai? Định luật 2 do Newton phát hiện ra và được chia thành định luật 2 trong thuyết cơ học cổ điển và định luật 2 trong vật lý thông thường.

Định luật 2 Newton được phát biểu như sau Gia tốc của một vật sẽ cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc luôn tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật đó

Từ phát biểu này, ta có công thức : (overrightarrow{a} = frac{overrightarrow{Fhl}}{m})

m là khối lượng của vật

(overrightarrow{a}) là gia tốc của vật và đo bằng đơn vị (m/s^{2})

Đây là công thức định luật 2 niu tơn lớp 10 đã được học. Tuy nhiên, với định luật này, ta còn có thể hiểu như sau:

(overrightarrow{F} = frac{doverrightarrow{p}}{dt}) với F là tổng ngoại lực tác dụng lên vật, (overrightarrow{p}) là động lượng của vật, đơn vị đo là kgm/s và t là thời gian, được đo bằng s.

Cách hiểu này đã đưa ra định nghĩa cho lực. Có thể hiểu, lực là sự thay đổi của động lực theo thời gian. Và lực của vật sẽ tỉ lệ thuận với động lực. Nếu động lực của vật biến đổi càng nhanh thì ngoại lực tác dụng lên vật sẽ càng lớn và ngược lại.

Ví dụ: một chiếc xe có khối lượng là m. Chiếc xe này đang chuyển động trên con người nằm ngang với vận tốc là v = 30km/h. Đang chuyển động thì chiếc xe bị tắt máy đột ngột. Tính thời gian chiếc xe bị dừng lại dưới tác dụng của lực ma sát giữa xe và mặt đường. Biết hệ số ma sát của xe với mặt đường là (mu =0,13) và gia tốc (g=9,81m/s^{2}).

Trước tiên ta cần đổi 30km/h = 8,33m/s.

Khi xe bị tắt máy đột ngột, lực tác dụng lên xe là lực ma sát. Áp dụng định luật 2 Newton ta có: (F_{ms}= m.a = mu P)

Vậy (a = frac{mu P}{g}= frac{mgmu}{m} = mu .g)

Có phương trình vận tốc: (v = v_{o}-at)

Chiếc xe bị dừng lại đột ngột, suy ra lực ma sát tác dụng lên chiếc xe sẽ có giá trị âm, vecto F ngược chiều chuyển động. Khi chiếc xe dừng lại, ta có v = 0, lúc đó t = T.

Suy ra: (0 = v_{o}-aT) nên: (v_{o}=aT)

Thay số, ta có thể dễ dàng tính được giá trị T.

Ý nghĩa định luật 1 và 2 Newton

Định luật 1 Newton nói lên tính chất quán tính của một vật. Đó là tính chất bảo toàn trạng thái khi chuyển động. Định luật này được áp dụng khá nhiều trong thực tế. Chẳng hạn như khi bạn đang ngồi trên một xe ôtô. Khi chiếc xe bắt đầu chạy, bạn và những hành khách theo quán tính sẽ bị ngã về phía sau. Ngược lại, khi xe đột ngột dừng lại thì mọi người lại bị chúi về phía trước. Tương tự như khi xe quành sang phải hay sang trái.

Giải thích hiện tượng này, định luật 1 Newton chỉ ra đó là do bạn và những người khác đều có quán tính do đó mọi người vẫn sẽ giữ nguyên trạng thái chuyển động cũ.

Chẳng hạn như đối với xe đua, các nhà sản xuất sẽ tính toán cách làm giảm khối lượng để xe có thể tăng tốc nhanh hơn.

Please follow and like us:

Định Luật Hấp Dẫn Của Newton

Newton đã khám phá ra mối quan hệ giữa chuyển động củaMặt trăng và chuyển động của một vật thể rơi tự do trên Trái đất . Bằng lý thuyết động lực học và hấp dẫn của mình , ông đã giải thích các định luật Kepler và thiết lập nên khoa học định lượng hiện đại về lực hấp dẫn. Newton đã giả định sự tồn tại của một lực hấp dẫn giữa tất cả các vật thể có khối lượng lớn, một lực không cần tiếp xúc với cơ thể và tác động ở khoảng cách xa. Bằng cách viện dẫn định luậtquán tính (các vật thể không bị tác dụng bởi một lực chuyển động với tốc độ không đổi trên một đường thẳng), Newton kết luận rằng một lực do Trái đất tác dụng lên Mặt trăng là cần thiết để giữ cho nó chuyển động tròn quanh Trái đất hơn là chuyển động trên một đường thẳng. Ông nhận ra rằng lực này có thể, ở tầm xa, giống như lực mà Trái đất kéo các vật thể trên bề mặt của nó xuống dưới. Khi Newton phát hiện ra rằng gia tốc của Mặt Trăng nhỏ hơn 1 / 3.600 so với gia tốc ở bề mặt Trái Đất, ông đã liên hệ con số 3.600 với bình phương bán kính Trái Đất. Ông tính rằng quỹ đạo chuyển động tròn đều bán kính R và chu kì T cần gia tốc hướng vào A không đổi bằng tích 4π 2 và tỷ lệ giữa bán kính với bình phương thời gian:

tác động của lực hấp dẫn lên Mặt trăng và Trái đất

Ảnh hưởng của lực hấp dẫn lên Trái đất và Mặt trăng.

Encyclopædia Britannica, Inc.

Của Mặt trăng trên quỹ đạo có bán kính khoảng 384.000 km (239.000 dặm; khoảng 60 Trái Đất bán kính), và thời gian của nó là 27,3 ngày (nó kỳ synodic , hoặc thời gian đo về Pha Mặt Trăng, là khoảng 29,5 ngày). Newton nhận thấy gia tốc hướng vào của Mặt Trăng trên quỹ đạo của nó là 0,0027 mét / giây / giây, bằng (1/60) 2 gia tốc của một vật rơi trên bề mặt Trái Đất.

Lực hấp dẫn

Lực hấp dẫn của Trái đất yếu đi khi khoảng cách ngày càng tăng.

Encyclopædia Britannica, Inc.

Trong lý thuyết của Newton, mọi hạt vật chất nhỏ nhất đều hút mọi hạt khác theo trọng trường, và trên cơ sở đó, ông đã chỉ ra rằng lực hút của một vật thể hữu hạn có đối xứng cầu giống như lực hút của toàn bộ khối lượng tại tâm vật thể. Tổng quát hơn, lực hút của bất kỳ vật thể nào ở một khoảng cách đủ lớn đều bằng lực hút của toàn bộ khối lượng tại tâm khối lượng. Do đó, ông có thể liên hệ hai gia tốc, của Mặt trăng và của một vật thể rơi tự do trên Trái đất, với một tương tác chung, một lực hấp dẫn giữa các vật thể nhỏ đi như là bình phương nghịch đảo của khoảng cách giữa chúng. Do đó, nếu khoảng cách giữa các vật thể tăng lên gấp đôi thì lực tác dụng lên chúng sẽ giảm đi một phần tư so với ban đầu.

Quan sát một thí nghiệm chứng minh vật thể nào chạy nhanh hơn 10 mét bằng cách so sánh vận động viên chạy nước rút nhanh nhất thế giới với một vật thể đang rơi

Một thí nghiệm để chứng minh cái nào nhanh hơn 10 mét: vận động viên chạy nước rút nhanh nhất thế giới hoặc một vật thể được kéo bởi trọng lực.

© MinutePhysics ( Một đối tác xuất bản Britannica ) Xem tất cả video cho bài viết này

Newton đã thấy rằng lực hấp dẫn giữa các vật thể phải phụ thuộc vào khối lượng của các cơ thể. Vì một vật thể có khối lượng M chịu một lực F sẽ tăng tốc với tốc độ F / M , nên một lực hấp dẫn tỷ lệ với M sẽ phù hợp với quan sát của Galileo rằng tất cả các vật thể đều tăng tốc dưới lực hấp dẫn về phía Trái đất với cùng một tốc độ, một thực tế mà Newton cũng đã thử nghiệm bằng thực nghiệm. Trong phương trình Newton F 12 là độ lớn của lực hấp dẫn tác dụng giữa các khối lượng M 1 và M 2 cách nhau một khoảng r 12 . Lực bằng tích của các khối lượng này và của G , một hằng số phổ quát , chia cho bình phương khoảng cách.

Lực tác dụng theo hướng của đường nối hai vật và do đó được biểu diễn tự nhiên dưới dạng vectơ , F. Nếu r là độ phân ly vectơ của hai vật thìTrong biểu thức này, hệ số r / r 3 tác động theo hướng của r và có giá trị bằng 1 / r 2 .

Lực hút của một số vật có khối lượng M 1 lên vật có khối lượng M làtrong đó Σ 1 có nghĩa là các lực do tất cả các vật thể hút phải cộng lại với nhau theo phương thẳng hàng. Đây là định luật hấp dẫn của Newton về cơ bản ở dạng ban đầu. Một biểu thức đơn giản hơn, phương trình (5), cho gia tốc bề mặt trên Trái đất. Đặt một khối lượng bằng khối lượng Trái đất M E và khoảng cách bằng bán kính r E của Trái đất thì gia tốc hướng xuống của một vật ở bề mặt g bằng tích của hằng số hấp dẫn phổ quát và khối lượng của Trái đất chia cho bình phương của bán kính:

Trọng lượng và khối lượng

The weight W of a body can be measured by the equal and opposite force necessary to prevent the downward acceleration; that is Mg. The same body placed on the surface of the Moon has the same mass, but, as the Moon has a mass of about 1/81 times that of Earth and a radius of just 0.27 that of Earth, the body on the lunar surface has a weight of only 1/6 its Earth weight, as the Apollo program astronauts demonstrated. Passengers and instruments in orbiting satellites are in free fall. They experience weightless conditions even though their masses remain the same as on Earth.

Equations (1) and (2) can be used to derive Kepler’s third law for the case of circular planetary orbits. By using the expression for the acceleration A in equation (1) for the force of gravity for the planet GMPMS/R2 divided by the planet’s mass MP, the following equation, in which MS is the mass of the Sun, is obtained:

Kepler’s very important second law depends only on the fact that the force between two bodies is along the line joining them.

Newton was thus able to show that all three of Kepler’s observationally derived laws follow mathematically from the assumption of his own laws of motion and gravity. In all observations of the motion of a celestial body, only the product of G and the mass can be found. Newton first estimated the magnitude of G by assuming Earth’s average mass density to be about 5.5 times that of water (somewhat greater than Earth’s surface rock density) and by calculating Earth’s mass from this. Then, taking ME and rE as Earth’s mass and radius, respectively, the value of G was which numerically comes close to the accepted value of 6.6743 × 10−11 m3 s−2 kg−1, first directly measured by Henry Cavendish.

Comparing equation (5) for Earth’s surface acceleration g with the R3/T2 ratio for the planets, a formula for the ratio of the Sun’s mass MS to Earth’s mass ME was obtained in terms of known quantities, RE being the radius of Earth’s orbit:

The motions of các mặt trăng của Sao Mộc (do Galileo phát hiện) xung quanh Sao Mộc tuân theo định luật Kepler cũng giống như các hành tinh xung quanh Mặt trời. Do đó, Newton tính toán rằng Jupiter, với bán kính 11 lần lớn hơn Trái đất, đã có kích thước lớn hơn Trái Đất nhưng chỉ 318 lần 1 / 4 như dày đặc.

Khi Định Luật Iii Newton Bị Vi Phạm

Khi định luật III Newton bị vi phạm

Cho dù bạn biết tên gọi của nó hay không, nhưng mọi người chúng ta đều quen thuộc với định luật III Newton – định luật phát biểu rằng với mỗi tác dụng luôn có một phản tác dụng bằng về độ lớn và ngược chiều. Bạn có thể nhìn thấy quan điểm này trong nhiều tình huống hằng ngày, ví dụ khi đi bộ, bàn chân của người đạp xuống mặt đất, và mặt đất đẩy lại một lực bằng về độ lớn và ngược chiều. Định luật III Newton còn thiết yếu cho việc tìm hiểu và phát triển xe hơi, máy bay, tên lửa, tàu thuyền, và nhiều công nghệ khác.

Mặc dù là một trong những định luật cơ bản của vật lí học, nhưng định luật III Newton có thể bị vi phạm trong những tình huống phi cân bằng nhất định. Khi hai vật hay hai hạt vi phạm định luật III, người ta nói chúng có tương tác phi tương hỗ. Các vi phạm có thể xảy ra khi môi trường tham gia vào tương tác giữa hai hạt theo một cách nào đó, ví dụ khi môi trường chuyển động so với hai hạt. (Tất nhiên, định luật III Newton vẫn đúng cho hệ “hạt-cộng-với-môi-trường” hoàn chỉnh.)

Trong các thí nghiệm mới, hai lớp vi hạt lơ lửng ở độ cao khác nhau phía trên một điện cực đã cho phép các nhà nghiên cứu khảo sát cơ học thống kê của các tương tác phi tương hỗ vi phạm định luật III Newton. Ảnh: A. V. Ivlev, et al. CC-BY-3.0

Mặc dù đã có vô số thí nghiệm trên các hạt với tương tác phi tương hỗ, nhưng người ta chẳng biết gì nhiều về cái đang xảy ra ở mức vi mô – cơ học thống kê – của những hệ này.

Trong một bài báo mới công bố trên tạp chí Physical Review X, Alexei Ivlev, cùng các cộng sự, đã khảo sát cơ học thống kê của những loại tương tác phi tương hỗ khác nhau và phát hiện một số kết quả bất ngờ – chẳng hạn các gradient nhiệt độ cực độ có thể phát sinh ở cấp độ hạt.

“Tôi nghĩ ý nghĩa to lớn nhất của công trình của chúng tôi là chúng tôi đã chứng minh chặt chẽ rằng những họ nhất định của những hệ về căn bản không cân bằng có thể được mô tả chính xác theo cơ học thống kê cân bằng (tức là người ta có thể suy ra một giả-Hamiltonian mô tả những hệ như thế),” phát biểu của Ivlev tại Viện Max Planck Vật lí Ngoài địa cầu ở Garching, Đức. “Một trong những hàm ý hấp dẫn nhất là, chẳng hạn, người ta có thể quan sát một hỗn hợp gồm hai chất lỏng cân bằng, nhưng mỗi chất lỏng có nhiệt độ riêng của nó.”

Một ví dụ của một hệ tương tác phi tương hỗ mà các nhà nghiên cứu đã chứng minh bằng thí nghiệm trong nghiên cứu của họ là các vi hạt tích điện lơ lửng phía trên một điện cực trong một buồng plasma. Sự vi phạm định luật III Newton phát sinh từ thực tế hệ gồm hai loại vi hạt lơ lửng ở độ cao khác nhau do kích cỡ và tỉ trọng khác nhau của chúng. Điện trường trong buồng lái một dòng plasma thẳng đứng, giống như một dòng chảy trên sông, và mỗi vi hạt tích điện tập trung các ion plasma đang chảy xuôi dòng, tạo ra một lằn plasma thẳng đứng phía sau nó.

Mặc dù lực đẩy xảy ra do các tương tác trực tiếp giữa hai lớp hạt là tương hỗ, nhưng các lực hút lằn-hạt giữa hai lớp thì không. Đây là do các lực lằn giảm theo khoảng cách đến điện cực, và các lớp đang lơ lửng ở độ cao khác nhau. Kết quả là lớp hạt ở dưới tác dụng một lực toàn phần lên lớp trên lớn hơn lực mà lớp trên tác dụng lên lớp hạt ở dưới. Vì thế, lớp trên có động năng trung bình lớn hơn (và do đó có nhiệt độ cao hơn) lớp ở dưới. Bằng cách điều chỉnh điện trường, các nhà nghiên cứu còn có thể làm tăng hiệu độ cao giữa hai lớp, từ đó làm tăng thêm hiệu nhiệt độ.

“Bình thường, tôi hơi bảo thủ một chút khi nghĩ về loại tiềm năng ‘trước mắt’ mà một khám phá nhất định (chí ít trong vật lí học) có thể có,” Ivlev nói. “Tuy nhiên, cái tôi khá chắc chắn là các kết quả của chúng tôi mang lại một bước quan trọng hướng đến hiểu rõ hơn những loại hệ phi cân bằng nhất định. Có vô số ví dụ của những hệ phi cân bằng rất khác nhau trong đó đối xứng tác dụng-phản tác dụng bị phá vỡ trong các tương tác liên hạt, nhưng chúng tôi chứng minh rằng, tuy vậy, người ta có thể tìm thấy một đối xứng căn bản cho phép chúng ta mô tả những hệ như vậy theo cơ học thống kê (cân bằng) trong sách vở.”

Trong khi thí nghiệm plasma trên là một ví dụ của sự đối xứng tác dụng-phản tác dụng bị phá vỡ trong một hệ 2D, thì đối xứng này cũng có thể xảy ra trong những hệ 3D. Các nhà khoa học trông đợi cả hai loại hệ biểu hiện hành trạng khác lạ và nổi bật, và họ hi vọng nghiên cứu kĩ hơn những hệ này trong tương lai.

Nguồn: chúng tôi align=”right”>Vui lòng ghi rõ “Nguồn chúng tôi khi đăng lại bài từ CTV của chúng tôi.

Nếu thấy thích, hãy Đăng kí để nhận bài viết mới qua email